Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nature ; 615(7951): 244-250, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36890373

RESUMO

The absence of electrical resistance exhibited by superconducting materials would have enormous potential for applications if it existed at ambient temperature and pressure conditions. Despite decades of intense research efforts, such a state has yet to be realized1,2. At ambient pressures, cuprates are the material class exhibiting superconductivity to the highest critical superconducting transition temperatures (Tc), up to about 133 K (refs. 3-5). Over the past decade, high-pressure 'chemical precompression'6,7 of hydrogen-dominant alloys has led the search for high-temperature superconductivity, with demonstrated Tc approaching the freezing point of water in binary hydrides at megabar pressures8-13. Ternary hydrogen-rich compounds, such as carbonaceous sulfur hydride, offer an even larger chemical space to potentially improve the properties of superconducting hydrides14-21. Here we report evidence of superconductivity on a nitrogen-doped lutetium hydride with a maximum Tc of 294 K at 10 kbar, that is, superconductivity at room temperature and near-ambient pressures. The compound was synthesized under high-pressure high-temperature conditions and then-after full recoverability-its material and superconducting properties were examined along compression pathways. These include temperature-dependent resistance with and without an applied magnetic field, the magnetization (M) versus magnetic field (H) curve, a.c. and d.c. magnetic susceptibility, as well as heat-capacity measurements. X-ray diffraction (XRD), energy-dispersive X-ray (EDX) and theoretical simulations provide some insight into the stoichiometry of the synthesized material. Nevertheless, further experiments and simulations are needed to determine the exact stoichiometry of hydrogen and nitrogen, and their respective atomistic positions, in a greater effort to further understand the superconducting state of the material.

3.
Rev Sci Instrum ; 93(9): 093901, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36182513

RESUMO

Tuning the energy density of matter at high pressures gives rise to exotic and often unprecedented properties, e.g., structural transitions, insulator-metal transitions, valence fluctuations, topological order, and the emergence of superconductivity. The study of specific heat has long been used to characterize these kinds of transitions, but their application to the diamond anvil cell (DAC) environment has proved challenging. Limited work has been done on the measurement of specific heat within DACs, in part due to the difficult experimental setup. To this end, we have developed a novel method for the measurement of specific heat within a DAC that is independent of the DAC design and is, therefore, readily compatible with any DACs already performing high pressure resistance measurements. As a proof-of-concept, specific heat measurements of the MgB2 superconductor were performed, showing a clear anomaly at the transition temperature (Tc), indicative of bulk superconductivity. This technique allows for specific heat measurements at higher pressures than previously possible.

4.
Nat Commun ; 13(1): 3073, 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35654798

RESUMO

Quantum phase transitions in quantum matter occur at zero temperature between distinct ground states by tuning a nonthermal control parameter. Often, they can be accurately described within the Landau theory of phase transitions, similarly to conventional thermal phase transitions. However, this picture can break down under certain circumstances. Here, we present a comprehensive study of the effect of hydrostatic pressure on the magnetic structure and spin dynamics of the spin-1/2 ladder compound C9H18N2CuBr4. Single-crystal heat capacity and neutron diffraction measurements reveal that the Néel-ordered phase breaks down beyond a critical pressure of Pc ∼ 1.0 GPa through a continuous quantum phase transition. Estimates of the critical exponents suggest that this transition may fall outside the traditional Landau paradigm. The inelastic neutron scattering spectra at 1.3 GPa are characterized by two well-separated gapped modes, including one continuum-like and another resolution-limited excitation in distinct scattering channels, which further indicates an exotic quantum-disordered phase above Pc.

5.
Nat Commun ; 13(1): 2301, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35484351

RESUMO

The 2-dimensional layered oxide material SrCu2(BO3)2, long studied as a realization of the Shastry-Sutherland spin topology, exhibits a range of intriguing physics as a function of both hydrostatic pressure and magnetic field, with a still debated intermediate plaquette phase appearing at approximately 20 kbar and a possible deconfined critical point at higher pressure. Here, we employ a tunnel diode oscillator (TDO) technique to probe the behavior in the combined extreme conditions of high pressure, high magnetic field, and low temperature. We reveal an extensive phase space consisting of multiple magnetic analogs of the elusive supersolid phase and a magnetization plateau. In particular, a 10 × 2 supersolid and a 1/5 plateau, identified by infinite Projected Entangled Pair States (iPEPS) calculations, are found to rely on the presence of both magnetic and non-magnetic particles in the sea of dimer singlets. These states are best understood as descendants of the full-plaquette phase, the leading candidate for the intermediate phase of SrCu2(BO3)2.

6.
Rev Sci Instrum ; 89(9): 092902, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30278728

RESUMO

A diamond cell optimized for single-crystal neutron diffraction is described. It is adapted for work at several of the single-crystal diffractometers of the Spallation Neutron Source and the High Flux Isotope Reactor at the Oak Ridge National Laboratory (ORNL). A simple spring design improves portability across the facilities and affords load maintenance from offline pressurization and during temperature cycling. Compared to earlier prototypes, pressure stability of polycrystalline diamond (Versimax®) has been increased through double-conical designs and ease of use has been improved through changes to seat and piston setups. These anvils allow ∼30%-40% taller samples than possible with comparable single-crystal anvils. Hydrostaticity and the important absence of shear pressure gradients have been established with the use of glycerin as a pressure medium. Large single-crystal synthetic diamonds have also been used for the first time with such a clamp-diamond anvil cell for pressures close to 20 GPa. The cell is made from a copper beryllium alloy and sized to fit into ORNL's magnets for future ultra-low temperature and high-field studies. We show examples from the Spallation Neutron Source's SNAP and CORELLI beamlines and the High Flux Isotope Reactor's HB-3A and IMAGINE beamlines.

7.
Proc Natl Acad Sci U S A ; 112(37): 11519-23, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26324917

RESUMO

Since the discovery of spin glasses in dilute magnetic systems, their study has been largely focused on understanding randomness and defects as the driving mechanism. The same paradigm has also been applied to explain glassy states found in dense frustrated systems. Recently, however, it has been theoretically suggested that different mechanisms, such as quantum fluctuations and topological features, may induce glassy states in defect-free spin systems, far from the conventional dilute limit. Here we report experimental evidence for existence of a glassy state, which we call a spin jam, in the vicinity of the clean limit of a frustrated magnet, which is insensitive to a low concentration of defects. We have studied the effect of impurities on SrCr9pGa12-9pO19 [SCGO(p)], a highly frustrated magnet, in which the magnetic Cr(3+) (s = 3/2) ions form a quasi-2D triangular system of bipyramids. Our experimental data show that as the nonmagnetic Ga(3+) impurity concentration is changed, there are two distinct phases of glassiness: an exotic glassy state, which we call a spin jam, for the high magnetic concentration region (p > 0.8) and a cluster spin glass for lower magnetic concentration (p < 0.8). This observation indicates that a spin jam is a unique vantage point from which the class of glassy states of dense frustrated magnets can be understood.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...